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The problem of determination of a heat flux density from the state of a material after heating is considered. 

When construction elements and heat-protective coatings, consisting of polymer composites, are subjected 

to heating, they undergo thermal destruction, and their state after cessation of heating provides some information 

about the character of such heat action. 

In the present work we consider how this information may be used to reconstruct the temperature depend- 

ence T(t) at some point of a structure or to determine the specific heat flux q(t) acting on a boundary. This may 

be done if there is a mathematical model of the thermal destruction process (the irreversible change of internal 

parameters of the material, viz., the density, the concentration of the constituents of the material, etc.). Such an 

approach is promising since it makes it possible to obtain a greater amount of information in full-scale tests by 

using of structural and heat-protective materials as heat indicators. 

Below we illustrate use of information obtained from thermogravimetric analysis of material samples before 

and after heat loading. 
We consider the simplest phenomenological model of a thermally destructible material [1 ]. According to 

[1 ], for thermogravimetric analysis of some thermally destructible materials the destruction process may be 

approximated by a sum of several reactions (stages) with different kinetic parameters. For the case of parallel 

independent stages the system of equations is as follows: 

r t  

dGi/dt = - AiGoiC i exp ( -  Ei /T  (t)) , i = 1 ... NST.  (1) 

Prior to thermal loading Ci = 1, and after cooling 

C i = e x p ( - t f  e x p ( l n A i - E i / T ( t ) ) d t )  ; 0  i = I . . . N S T .  (2) 

The problem is subdivided into three problems for determination of: 1) A i, E i, Cot for the initial material 

(formulation of the mathematical model of material destruction); 2) Ci for the material after heating; 3) T(t) in 

terms of Ci. 
Problem 1 is solved analogously to [1, 2 ] (by successive subtraction of stages); problem 2 by optimization 

methods (for the given kinetic parameters the C i values are chosen so as to provide the best approximation of the 

thermogravimetric curve of the material after heating). 

To solve problems 1 and 2, we have composed a set of programs in Basic for an IBM PC AT and verified 

it for several materials. Subsequently, we analyze only problem 3, considering that we already have a model of the 

material (the values of the kinetic parameters) and the Ci values. 

The system of equations for the concentrations of the stages after heating T(t) has the form (-In ( C i ) / A  i 

= CKi( tk  )): 

t 
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tk 
CKi( tk  ) = f exp ( -  E i / T ( t ) ) d t ,  i = 1 . . . N S T .  (3) 

o 

We must find T(t)  by using the known C K  i, i.e., solve a nonlinear inverse problem (reconstruct the cause 

from its effect). 

System of equations (3) has infinitely many solutions because the interchange of two sections of the curve 

does not change the value of the integral. 

In order to single out the necessary solution we will use a priori information that contains the time interval 

tk (in order to eliminate the zeroth values) and requirements on smoothness and symmetry of the solution (to avoid 

the rearrangement symmetry). Knowing a sufficiently exact initial approximation T( t ) ,  the problem may be 

linearized to give the system 

t 
CKi(t ) = f Ki(T (~)) AT (T)dT, i = 1 . . . N S T ,  (4) 

0 

which is the discrete analog of the Fredholm equation of the first kind. Problems that are close in character arise 

in determining by satellite the temperature, moisture, and concentration of gases of the Earth or planets by their 

radiation spectrum [3-6]. 

If the change in the temperature T(t)  is not arbitrary but is determined by some beat transfer and heat 

conduction problems, then some of the solutions of system of equations (3) may be realized only for nonphysical 

values of the heat flux, thus permitting regularization of problem 3 by solving the inverse heat conduction problem. 

As a result, we arrive at a problem that differs from those described in [7, 8] and is close to problems of optimal 

control. 

We now consider a thin plate made of a material that is destroyed on heating according to some known 

law (this is the kinetic equation of a first-order reaction): 

C (T) G (t) d T  ( t ) / d t  = q(t) - e a t  4 ( t ) ,  (5) 

( ) G (t) = G O exp - A f exp ( -  E / T ( t ) )  dt  , 
0 

(6) 

t e l 0 ,  t~]; T(0)=To, 

We assume that G(tk) -- G K  is known from experiment, and it is necessary to determine q(t) .  We will seek 

the heat flux in the form q(t) = ~q0(t), where qo(t) is the a function given a priori; ~ is a parameter (a relative heat 

flux). We seek a ~ that minimizes the discrepancy (GK-G( tk ,  ~))2. 

If the rather natural assumption that with an increase in the heat flux and the temperature the final mass 

of the material decreases (dG(tk ,  ~)/ar~ < 0) is fulfilled, then a solution exists and it is unique. Thus, a thermally 

destructible material may be used for determination of the relative heat flux similarly to heat-sensitive paints or 

irradiated crystals [9 ]. 

We now consider a material whose thermal destruction is described by several parallel independent 

reactions: 

G i (t) = Goi exp ( -  A i f exp ( -  E i / T ( t ) )  d t  , 
o 

i = 1 . . .  N S T ,  (7) 

G ( t ) = E G  i ( t )  or G ( t ) = c o n s t .  
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Fig. 1. Reconstruction of the heat flux density q(t): 1) exact solution; 2) initial 

approximation; 3, 4) solutions with exact and disturbed initial data, 
respectively, q, W/m2; t, sec. 

Fig. 2. Reconstruction of the heat flux density (nine points) q(t): l) exact 

solution; 2) initial approximation; 3) solution by the suggested method. 
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Fig. 3. Reconstruction of the heat flux density q(t)  and temperature: 1) heat 

flux density (calculation); 2) heat flux density (experiment); 3) temperature 

(calculation); 4) temperature (experiment). T, ~ 

For G(t )  = const this system may be interpreted as one describing several materials that undergo destruction by a 

single-stage mechanism and are deposited onto a nondestructive substrate, i.e., some analog of heat-sensitive paints 

on a thin shell. 

We know the values of G K  i = Gi(tk)  obtained on heating by an unknown heat flux q(t), which must be 
determined. We use the a priori information ( tk is known, q(0) = q( tk)  -- 0, the time network matches with the 

solution). Since the given system is rather complicated, we have performed computations to investigate the existence 

and the uniqueness of the solution. We have sought the vector qj q = 1 . . . . .  N T P )  that represents parametrically 

some function (q] = q( t i ) )  as the vector minimizing the discrepancy Z ( G K  i - G i (tk, qj))2. In seeking a minimum, 

we used the method of conjugate gradients [5 ]. Derivatives of the functional of the discrepancy were obtained by 
performing the difference approximation with respect to the parameters q]. Computations were inade on a BESM-6 
LSI computer for approximately 1 h. The values of q(t)  between the nodes were found by linear interpolation. 

Figure 1 shows the data of a model computation of heat flux reconstruction at N T P  = 5, the result being satisfactory. 
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Fig. 4. Reconstruction of the heat flux density (a thick plate, five points) q(t): 

1) exact solution; 2) initial approximation; 3) solution by the suggested 

method. 

In the same figure, the results of GKi computation with a random error of _+10% are given. The solution is rather 

stable to this error. Figure 2 shows the results of reconstruction of a heat flux with two maxima. There are also 

solutions with nonzero discrepancy in which gradient methods are no longer valid, indicating the probability of 

local minima. It is pertinent to note here that the discrepancy has a pronounced "ravine" character (depending on 

the direction of change q, the increment of the discrepancy may differ by many orders of magnitude). A reliable 

method (but unfortunately one requiring a long computation time) is that of random search, which allows several 

solutions to be obtained at once. 

Note that the solutions are stable to small changes in q(t).  This means that regularization of the problem 

may be accomplished with the aid of a sufficiently accurate initial approximation. 

Figure 3 illustrates reconstruction of the heat flux and the temperature of a thin (0.5 - mm) composite 

polymer shell in comparison with experimental data. 

We extend the problem to a plate with a one-dimensional temperature distribution over depth. Assume that 

the concentrations of the components at several ( N T  >_ 1) depths are known: 

G (t , x) C(T)  OT (x t) - O [ )t (T) OT (t ' x) Ox = 0 ,  (8) 

G i ( t ,  x) = Got exp - A i f  e x p ( - E i / T ( t ,  x)) dt  , 
0 

i =  1 . . .  N S T  , 

OT (t,  Xm) 
G ( t ,  x) = ZG i ( t ,  x) ; Ox - (q(t) - er 4 (/ ,  X m ) ) / ~ t ( T ) ,  

(9) 

OT(t, Xm) 
- - 0 ;  t ~ (O , tk) ; x ~ (O , XnO ; T (O , x) = T O (x) ; G i (tk , x]) = GKi] . 

Ox 

The values of CKij a r e  determined from thermogravimetric analysis of the sample after testing. It is 

necessary to determine the heat flux q(t) acting at the boundary x - Xm. 

At N T  = 1 the problem differs slightly from problem (7) but at N T  = 2 this difference becomes substantial. 

If the layers where "measurements" are made are sufficiently far from each other in the sense of noncoincidence 

of CKij values and there is no degeneracy (CKij ~ O, 1), then the possibility of permutations and addition of zeroth 

terms is eliminated. 
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Because of the complexity of the analysis we investigated the problem numerically for the most part. In 

the calculations, we sought the vector qb representing parametrization of the desired function q(t): qj = q(tk) ,  as 
the vector minimizing the discrepancy .Z [G(tk, xj) - GKii ]2. 

l , l  
The computations have shown that the functional of the discrepancy has many local minima and a distinct 

"ravine" profile. We adopted the methods of conjugate gradients [7 ] and random search. Problem (9) was solved 

by A. A. Samarskii 's integrointerpolation method. In each step the direct heat conduction and the t h e r m a l  

destruction problems were computed. Next, we calculated the discrepancy and selected a heat flux for its 

minimization. 
As the computations have shown, gradient methods are effective only with a relatively good initial 

approximation, which is explained by the presence of local minima. 

The random search method may be used with any initial approximation but it is limited in the number of 

parameters to be optimized since they require a long computation time (computation on a BESM-6 LSI computer 
takes several hours). 

On the whole, the numerical experiments have confirmed that the proposed system of equations may be 

regularized by using a priori information on the heat flux (heat load duration, number of maxima, q(0) = q(tk) = 

0)) (see Fig. 4). 

Thus, use of data of thermogravimetric analysis makes it possible, provided a mathematical model of 

thermal destruction and a priori information on heat flux action are available, to reconstruct the time dependence 

of the heat flux density in a composite polymer material. 

N O T A T I O N  

G, sample weight; Gi, weight of the i-th stage (ZGi = G); Ci, concentration of the stage (0 _< C i < 1); Ei, 

reduced activation energy (K); n, degree of the reaction (in the given case n = 1); Ai, preexponential factor (1/sec); 

t, time; x, coordinate; T, temperature; q(t), heat flux density; C(T), specific heat; ;t, thermal conductivity; a, 

Stefan-Boltzmann constant; e, emissivity factor; N S T ,  number of stages; N T P ,  number of points in time. 
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